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We prove that from the stabiiity(asymptotic stability) of linear system (1) follows 
the stability (respectively, asymptotic stability) of the trivial solution of nonlinear 
system (2) if the deviations of the arguments and the nonlinear addition are 

sufficiently small in the correspinding integral sense, 

For I = 1,2,. . . , q we denote f (t, EL, ql) =f (t, E1, h,. . ., &,q~,%~. . * 
qp), where f, &, tll are m-dimensional vectors. We consider the following two systems: 

the linear system (1) and the nonlinear system (2) perturbed [ 11 relative to (1) 

P 

Here fph, +r , ~1 are tra~formatio~ of the argument, A k (f) are square matrices, 
x and I# are m th-order vectors. Everywhere the integrals are to be understood in the 
Lebesgue sense, The derivative is to be understood in the following sense. If for some 
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constant vector c 

u(t) = c + Su(r)dr 

for t E [a, b] then u (t) is called the derkative of 2, (t) and denoted v’(t) for t E 

Ia, b] . In this paper we shall use the following notation : (1 I( is the norm of a vector 
or a matrix, equalling the sum of the moduli of the elements ; Y (t) is the matrix solu- 

tion of system (l), satisfying the initial condition Y (t,) = E, where E is the unit mat- 
rix; 2 (0) is a set of m-dimensional vector-valued functions, defined for t < 8, whose 
components have an at most countable set of discontinuity points ; W (0) is a 

set of m-dimensional vector-valued functions, defined for t < 8, whose components 

are continuous. 
l,et z E 2 (a), w E W (a). A vector-valued function z (t) satisfying system (2) 

for t E [a, b] and the conditions IC’ (t) = z (t), II: (t)= w (t) for t < u is called a 

solution.of system (2) for t E [a, b],corresponding to the initial vector-valued func- 

tions z (t) and w (t) . We note that here we do not require the fulfillment of the so- 

called connection condition. The problem is to determine the stability conditions for 

the trivial solution of system (2) if the trivial solution of system (1) is stable. 
The following conditions for system (2) are in aggregate called conditions CU. 

1) The elements of matrices /i k (t) are determined for t cg [t,, oo)and have an 

at most countable set of discontinuity points. 

2) (1 Ak (t) 11 < ak for t E [to7 m). 

3) The vector-valued function f (t, El, ql) is defined for t E [~,,,<co) for 11 q$j < 
R .where R > 0,and for any & . 

4) For each component of the vector-valued function f (t, &, rl) there exists 

an at most countable set of values of t, at which it suffers a discontinuity. 
5) There hold the inequalities 

where gl (t) and hl (t) are integrable functions on any finite interval it,,, 2’1 (we can 

assume that gz (t) Q Gl, h, (t) < fi,), and 

6) The functions (Pk (t), ql (t) and Xl (t) are defined for t E It,, co), satisfy 
the inequalities (Pk (t), I#~ (t), x2 (t) ,< t and have an at most countable set Jf discon- 
tinuity points. 

7) There exists ‘to > t,, such that (Pk (t) > t, for t > ~~~ 
8) The functions A j, (t) = t - (Pk (t) are integrable on any finite interval It,, 

Tl and m 

s ‘A,(z)dz<oc 
to 

9) For each function 91 (t) any finite interval ItO, ?‘I can be represented as a 



40 V.P.Skrlpnik 

finite sum of intervals on each of which the function either strictly increases or strictly 
decreases or is constant. 

As the sets of initial vector-valued functions we take the sets 2 (t,) and W (t,).The 

trivial sultion of system (2) is said to be stable if for any F. > (1 there exists 6 > 0 
such that the solution of system (2), corresponding to any initial vector-valued functions 

z E 2 (to), W E W’ (t,,) such that 1 z (t) (1 < 6, 11 w (t) 11 < 6 for t > t,, satisfies 

the inequalities 11 5’ (t) 11 < E, II x (t) 11 < E. If lim,,, x (t) = 0, then the trivial 
solution of system (2) is said to be partially asymptotically stable. However, if 

lim,,, x’ (t) = 0 and lim,,, x (t) = 0, then the trivial solution of system (2) is said 
to be asymptotically stable. 

Theorem 1. Assume that: 1) conditions co are fulfilled for system (2) ; 2) the 
matrix A (t) is periodic or is such that 

s spA(t)dz>a> - ~0 (3) 
t. 

Then the stability of the trivial solution of system (2) follows from the stability of the 
trivial solution of system (1). 

Proof. We denote F (t, EL, ql) = f (t, &, CL), where 

The vector-valued function F (t, &, ql) satisfies the following conditions. It is defined 

for t E [L,, M) and for any & and rl; for each of its components there exists an at 
most countable set of values t for which the component becomes discontinuous ; for any 

El. rll, 51’7 Yl’9 EL”> rll” we have the inequalities 

I( F (4 El, rlz II < i g, (4 II EL II + i 4 t”) I/ 111 II 
I=1 ,Z_1 

Ij F (4 EL”, q”) - F (t, El’, vl’) I/ < i G, II El” - 51’ II + 2 i Hz II %” - %nll 
I=1 I=1 

Let us consider the system p 

z’ (r) = ,zt A, (0 .r (Q (t)) + F (t, x’ ($ (t)), 5 (Xz (r))) (4) 

We take any sets 2 (0,) and W (e,), where 8, > tO, and any bounded vector-valued 

functions z E 2 (8,) and w E ‘W (O,).We denote 

p = max {I + d + (a + H) (0, - en), a + H) 

p = supt,te, Jj z (0 )I 4 SUPf,(Oa II w w II 

d = $ G,, H = i I$!, 
j’ 

a= xah- 
1=1 I=1 k=l 

We take d, satisfying the inequality d ( d, < 1. Let 8, be such that 

0, - 0, = (d, - d)/(a i-- 2H) 

With the aid of the successive approximations 
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I w(t), too 

% (f) = 
2 po>, t E (007 41 
z (a t\<eo 

where for t E_ [Q,, 8,] components of vector functions 2, (t) have an at most count- 
able set of discontinuity points. it is not difficult to show that a solution x (t) of system 

(4) exists for t E [$,, o,], corresponding to ,c (t) and w (t) This solution is unique 
since by assuming the contrary we get that do > 1. The inequalities 

ll~‘(t)II\<P-t gp Il~(wsP+ (P+ &f)(O,-eo) (5) 

are valid for t E IO,, El,]. 
Let z E Z (1,) and W E W (to). By virtue of what we have proved, a unique solu- 

tion 5 (t) of system (4) exists for t E it,, tJ, where 

t1 - to zzzz (d" .--- d)la + 2H 

corresponding to the initial vector-valued functions z (t) and w (t>* This solution satis- 

fies bounds (5) for t E It,, tl] . Assuming the vector-valued functions 5’ (t) and x (t) 
as initial ones, we continue the solution in unique manner on the interval it,, tsj, where 

ts - t1 -’ (do - d)/n + 2w 

This continuation satisfies bounds of type (5) for t E [tl, t,] , etc. Hence it follows 
that a unique infinitely-continuable solution 2 (t) of system (4) exists, and it corresponds 
to the initial vector-valued functions z (t) and UJ (t). For arbitrary numbers T > t, 

and E > 0,we can find 6 > 0 such that for t E [t,, TI we have 11 a1 (t) 11 ( E, 
11 X (t) 1 < E for any solution x (t) of system (4), corresponding to the initial vector- 
valued functions z E z (to) and w E w (to) such that if z (t) /I < 6, l W !tf 11 < 6. 

When condition (3) is fulfilled, the matrix Y-l (t) is bounded for t E It,, 0). The- 
refore, in the given case the quantity 11 Y (t) Y-l (z) 1 is bounded for t ES! f lo, M), 

r E ILO, tl. When the matrix A (t) is periodic, Y (t) = P (t) eBt [z), where P (t) 
is a periodic matrix, B is a constant matrix, and etit is a bounded matrix. By virtue 
of the equality Y (t) Y-l (r) = P(t) eR(f-T) P-l (T) the quantity 11 Y (t) Y-l (5) 11 
is bounded for t E lt,, ,-Q), 7 E ito, t]. Therefore, in any case we can find a number 
pO such that 1) Y (t) Y-’ (~1 11 Q w. for t E It,, 30), T E It,, tj. 

Let To > -co be such that 
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We take any 6 > 0. Let 

and I w @I /j -=z 8, 
i: E z (to) and W E @” ( fa) be such that 11 z (t) j/ ( 6 

and let 5 ft) be the solution of system (4) ~~es~~ding to them, 
We take any T > l’,. We denote 

From equality (4) it follows that 

fi 2’ (t) I/ Q a (6, + &_I + d (6, + &I + ff (6, + ha) 

for t E [T,, T], Hence we get that 

valid for t > T,, taking (6) into account we obtain 

/I z (qk (t)) - II: (t) II< aA, (t) @a + 6,) f dA, ($1 @I + 61) -!- 
HA, (t) (ha + 6,) < aA, (t) ha + ah, (t) 6, -i- dA, (t) (’ ;:! A2 -t 
dA,c (t) q_$=? + dAC\, (t) 6, + fib, (t) A, + HA, (t) 6, 

for t E I?‘,, Tl. Taking the last inequalities into account we obtain the following 
estimates when t E 1 T,, 2’1 : 

I/ A k tf) [a ((Pk (t)) - 2 (t)l 11 d MAk (f) i- L, (61, 6,)Ak (C) 

L1 (a,, 6,) = aaS, + ad (’ + y)2d+ “l + ad& + uN6, 

(7) 

When t> t, the solution z {t) satisfies the forgoing system of integral equations s 

5 (t) = Y (0 + c Y (0 Y-l (r) ; A, (r) [z (R(T)) - 2 (r)I dr + (8) 

to k=l 

where y (t) is the solution of system (l), satisfying the initial condition y (t,) = w (to). 
Let us separate the integration interval in equality (8) into [t,, T,,l and IT&J. Then, 
taking inequalities (6) and (7) into account, we obtain the following inequality when 

t dT,, TJ: 

L, (a,, 6,) = p,, (To - t,) [2ab, + d$ + f&l + k‘oLl(h 62) X 

k=l To i=l To 
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Hence 

The latter inequality is independent of T. Therefore, when t > T, the vector-valued 

funotion z (t) satisfies the following inequality: 

II Lx (t) II \< Y (9) 

From inequalities (6) and (9) it follows that 

II x’ P) II G 
(a -I- W (82 + Y) -t & 

l-d 

for t>T,. Since the numbers a,, 6, and 6, can be made arbitrarily small, the tri- 

vial solution of system (4) is stable for all z E .!? (t,) and ‘w E w (t,) such that 

11 z (t) jj < 6 and I( w (t) (1 < 6, if 6 is sufficiently small. Therefore the trivial solu- 

tion of system (2) is stable. Theorem 1 is proved. 
Theorem 2. Assume that : 1) conditions o are fulfilled ; 2) matrix A (t) is peri- 

odic. Then the partial asymptotic stability of the trivial solution of system (2) follows 
from the asymptotic stability of the trivial solution of system (1). 

Proof. From the fact that the trivial solution of system (1) is asymptotically stable 

it follows, on the basis of Theorem 1, that the trivial solution of system (2) is stable. 
Let r satisfy the inequality 0 < r < R. We can find 6 > 0 such that if only the 

initial vector-valued functions z E 2 (to) and w E T/T’ (t,j satisfy the inequalities 

I( z (t) I\ ==c 6, 11 w (t) Ii < 6, t h en the solution 12: (t) of system (2) t E it,, a) 
corresponding to them satisfies the inequalities 1) z’ (t) II < r, 1) x (t) II < r. We shall 

consider such solutions only. 
We take any E > 0. Let T, > ‘Go be such that 

p. _- sup 
G[fo,m), G[W] II y (4 Y-l (4 II 

Let T > To be such that for t > To we have 

II Y (4 II + 2~ I/ Y (t) II i II Y-l CT) II dr + r Cd + H) II Y (0 II i II Y-l (4 II dr c’~ $ 

where y (t) is the solutiodif system (1). satisfying the initial coidition Y (to) = w (to). 
We make use of equality (8). valid for t > to , in which instead of F there occurs the 
function f of those same arguments. Taking into account that 

II Ah (t) (x (‘ok (0) - J: (0) II d ar (a t- d + H>Ak (t) 

for t > T o , we obtain the following inequality : 

to 
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which is valid for t > T,. Therefore, I[ 5 (t) 11 < E for t > T . But this signifies 
that lim t_m~ (t) = 0. Theorem 2 is proved. 

Theorem 3. Assume that : 1) the hypotheses of Theorem 2 are fulfilled ; 2) 
lim rp, (t) = co, lim $+ (t) = 00, limXz (t) = 00 as t -+ 00. Then the asymp- 
totic stability of the trivial solution of system (2) follows from the asymptotic stability 
of the trivial solution of system (1). 

Proof. bet r satisfy the inequality 0 ( I” < R. We take 6 ‘> 0 such that if 
only the initial vector-valued functions z E 2 (t,) and w E I&’ (to) satisfy the in- 

equalities [ 2 (t) 11 -c 6, 11 LI’ (t) 11 < 6, then the ~~es~nd~ng solution (21 f t) of sys- 
tem (2) s&&es the inequalities 11 Z’ (t) \} < r, /ix (t) j/ < r when t >, t, and, in 
addition, Em,,, x (t) = 0. We shall examine such solution-only ; let .z (t) be one 
of them. We take any E > 0. We take T, > t, such that 

for t > T,. 
k=l I=1 

Thereexists T (T,) > To such that $ ct) >TT, when t > T (T,) . For any 
o > to we denote A (0) = aUpt&a 111’ (t) I[. Obviously. the function A (cr) is non- 
increasing. Since it is bounded from below, Am = lim ,,,A (o). exists, From equal- 
iq (2) we obtain 

for t 2 T (To), Hence 
A U’U,)) < dA (To) + a 

Passing to the limit as T, -+ 00, we obtain 

A,--(dA, +% A, < &/(I - (8 

Since E is arbitrary, Am =G 0. But this signifies that limt_+, s’(C) = 0. Theorem 3 
is proved. 

ff d < r/s? in conditions o it is sufficient to require that the vector-valued function 
f (t, &, Q) be bounded only for /I & /I< R. The results of this paper generalize to 
the case of an infinite countable number of transformed arguments. 

Together with system (1) let us consider a system (2) in which p = 00 and I = 1, 
2, 3... The fo~ow~g conditions for this system are in aggregate called conditionswl: 

1) Conditions 1) - 4) and 6) - 9) of conditions w are fulfilled and 

k=l ic=lfo 

2) There hold the inequalities 

iiftf~~~r~lr.‘~--f~~~Ez’~rl~~,l~~ G&t”-E,‘ljii ~&II~a”---&jj 
1-1 I=1 

where gl (t) and h, (t) are integrable functions on any finite interval ito, T1 (we au 
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assume that gr (t) < G,, h, rt) \< Ei,), and 

Theorems 1 - 3 will hold for this case if conditions o are replaced by conditions or., 
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We prove a generalization of the Kelvin-Chetaev theorem. We examine certain 

aspects of the stabilization of unstable potential systems by gyroscopic and non- 

conservative forces [ 11, 

1. We consider the systems (D, P are constant symmetric ( iz x n )-matrices) 

x’* + Ds’ + FLZ = 0 (1.1) 

x" + Dx‘ + Fx = X (z, 2') 0.2) 

2 = COl(X~, . . ., xn), x (x, x') -= col(X, (x, x’), . . . ) x, (5, ;c')), X(0,0)=0 

(the functions Xi Is, x') contain x$, x~’ to powers not less than second). 
A result which we can state as the following theorem was proved in [Z]. 
The Kelvin-Chetaev theorem. If matrix D is positive definite and 

among the eigenvalues of matrix F there is at least one negative, then systems (1.1) 
and (1.2) are unstable. 

A result which can be looked upon as a generalization of the Kelvin-Chetaev theorem 
was proved in p]. 

The theorem from [3], If matrix L) is positive definite and IF 1 # 0, then 
the number of roots with a positive real part of the characteristic equation 

/Bh2+03L+F/=0 0.3) 
equals the number of negative eigenvalues of matrix F. 


